

## HEALTH-CODE Real operation PEM fuel cells HEALTH-state monitoring and diagnosis based on dc-dc COnverter embeddeD Eis

## PANEL 4

**Research activities for stationary applications** 

#### ACRONYM

CALL TOPIC

HEALTH-CODE

FCH-02.3-2014: Stationary fuel cell system diagnostics: development of online monitoring and diagnostics systems for reliable and durable

#### **MAIN OBJECTIVES OF THE PROJECT**

1) Implementation of monitoring & diagnostic tool based on Electrochemical Impedance Spectroscopy (EIS) for µ-CHP & O2-fed backup PEMFC.

2) Development of a tool for state-of-health assessment, fault detection & isolation as well as degradation level analysis for lifetime extrapolation. Determine the current status for the detection of 5 faults:
i) change in fuel composition; ii) air and iii) fuel starvation; iv) sulphur poisoning; v) flooding and dehydration. Infer on the residual useful lifetime.



#### **FUTURE STEPS**

• Expecting a 1st set of EIS measurements for stacks characterization to be released in June 2016.

| Systems for reliable and unable |                              |  |  |  |
|---------------------------------|------------------------------|--|--|--|
|                                 | fuel cell system operation   |  |  |  |
| START DATE                      | 1/09/2015                    |  |  |  |
| END DATE                        | 31/08/2018                   |  |  |  |
| <b>PROJECT TOTAL COST</b>       | €2,3 million                 |  |  |  |
| FCH JU MAXIMUM<br>Contribution  | €2,3 million                 |  |  |  |
| WEBSITE                         | http://pemfc.health-code.eu/ |  |  |  |

#### **PARTNERSHIP/CONSORTIUM LIST**

UNIVERSITA DEGLI STUDI DI SALERNO, AALBORG UNIVERSITET, DANTHERM POWER A/S, EIFER EUROPAISCHES INSTITUT FUR EN-ERGIEFORSCHUNG EDF KIT EWIV, ELECTRO POWER SYSTEMS MAN-UFACTURINGSRL, TORINO E-DISTRICT CONSORZIO, UNIVERSITE DE FRANCHE-COMTE, ABSISKEY CP 3) Reduce experiments, time & costs through scaling-up methodology.

#### **PROGRESS/RESULTS TO-DATE**

- Thorough state-of-art study on the most relevant PEMFC faults & on relevant diagnostic strategies.
- Test protocols developed for both µ-CHP and backup stacks, with respect to normal & faulty operation testing.
- All stacks have been installed on test benches at three laboratories.
- EIS board and power electronics under design process to meet measurements targets for monitoring & diagnostic purposes.
- Several diagnostic algorithms under development; preliminary analysis performed based on data from previous projects.

- Release of the 1st scaling-up algorithm to model stack behaviour from single cell EIS data.
- 2nd generation of the EIS board, improved with respet to the one developed in D-CODE project, will be released for first tests.
- Interfacing the EIS board and the converters to perform EIS during FC system operations.
- Integration of both hardware and algorithms for testing on FC systems.

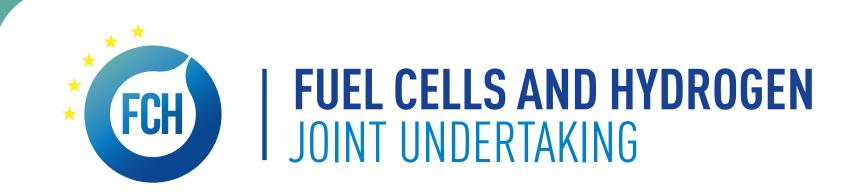
#### **CONCLUSIONS, MAJOR FINDINGS AND PERSPECTIVES**

- Main activities are still ongoing and conclusions can't be drawn yet.
- Transfer EIS measurements from lab. to on-board applications to improve diagnostics + support advanced lifetime analysis.
- It is expected the implementation of a low cost board driving the DC/ DC converter to perform the EIS, while the system is running on field.

#### **CONTRIBUTION TO THE PROGRAMME OBJECTIVES**

#### PROJECT OBJECTIVES / TARGETS

### CORRESPONDING PROGRAMME OBJECTIVE / QUANTITATIVE


### **CURRENT PROJECT STATUS**

# PROBABILITYOF REACHINGINITIAL TARGETSTATE OF THE ART 2016 -VALUE AND REFERENCE

#### COMMENTS ON PROJECT PROGRESS / STATUS

|                                                                                                                                                             | TARGET (SPECIFY TARGET YEAR)                                                                                       |                                                                                 | INITIAL TARGET |                                                                                                                        |                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Project objectives relevant to n                                                                                                                        | MAWP 2014-2020                                                                                                     |                                                                                 |                |                                                                                                                        |                                                                                                                                                   |
| Monitoring and diagnostic algorithm for improved PEMFC system efficiency, reliability & availability.                                                       | Increase electrical efficiency<br>and durability of the different FCs<br>used for power production                 | Several diagnostic algorithms<br>(i.e. model- and signal-based)<br>under design | 100 %          | From D-CODE project results, diag-<br>nostic algorithms have been success-<br>fully applied on PEMFC systems.          | Activities are on time; preliminary<br>results based on available data.<br>Algorithms will tested on data<br>acquired during project experiments. |
| EIS board cost <3% of the overall system manufacturing cost.                                                                                                | Reduce total cost ownership<br>(TCO in €/kWh)                                                                      | EIS board design based on components improvement for cost reduction.            | 100 %          | From D-CODE project: overall cost of<br>EIS board (with the provided accuracy)<br>within 3% of the tested PEMFC system | EIS board cost under analysis vs<br>the considered components for the<br>the 2 systems (µ-CHP and backup).                                        |
| Backup system designed to be cou-<br>pled with electrolyser for an inde-<br>pendent power production system                                                 | Improve grid stability through<br>applications of stationary FCs<br>+ energy storage                               | Investigation of pure O2 feed<br>instead of air considered for<br>backup system | 100 %          | Negligible activity in literature on EIS applications & diagnostic analysis combined with O2-fed systems.              | Test bench organized to perform tests on this system under normal & faulty conditions.                                                            |
| (b) Project objectives relevant to a                                                                                                                        | AWP 2014                                                                                                           |                                                                                 |                |                                                                                                                        |                                                                                                                                                   |
| Demo of fault diagnosis on 2 stacks<br>for µ-CHP and Backup                                                                                                 | Demo of detection of major stack/<br>system failure modes in lab tests<br>with min. 2 different platforms          | Stack installed on test benches<br>and experimental activity at<br>early stages | 100 %          | Not available for FC systems,<br>few data available on stacks                                                          | Some delay due to change from air- to O2-fed system. However, overall progress is still on time, no further problem                               |
| 5 faults considered: i) change in<br>fuel composition; ii) air starvation;<br>iii) fuel starvation; iv) sulphur poi-<br>soning; v) flooding and dehydration | 5 failure modes detectable                                                                                         | Testing protocol defined; diagnostic<br>algorithms under design                 | 100 %          | From D-CODE project, only 3 faults<br>(flooding, dehydration & air starva-<br>tion) were considered                    | Preliminary results obtained. Refine-<br>ment on diagnostic algorithms with data<br>from experimental activity to be done                         |
| Lab tests & field operation emulat-<br>ed on 2 PEMFC systems (µ-CHP and<br>backup) to validate monitoring &<br>diagnostic algorithms                        | Lab or field- demo of the monitoring/<br>diagnostics approach integrated<br>into2 FC systems                       | Lab tests at early stages                                                       | 100 %          | From D-CODE: only lab tests<br>on backup system                                                                        | Field operation planned after<br>the 1st mid-term                                                                                                 |
| EIS to estimate electrochemical info at cell level to monitor/follow time evolution of several metrics                                                      | A methodology for state-of-health<br>monitoring incl. degradation measure-<br>ment & remaining lifetime prediction | Methodologies under investigation for lifetime evaluation from EIS data         | 100 %          | Only few works available on this topic, mostly for lab application                                                     | No preliminary results yet; most<br>work performed on literature data.                                                                            |



